Influence of including uncertainty on species sensitivity distribution (SSD) analyses – A case study with non-target terrestrial plants (NTTP)

Dan WU¹, Virginie DUCROT² and Sandrine CHARLES¹ ¹Univ Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France ²Bayer AG, Crop Science, Monheim, Germany

Introduction

Species Sensitivity Distribution (SSD):

- is a key tool at higher tiers of the environmental risk assessment (ERA) for chemicals;
- describes the sensitivity of a set of species to a chemical substance as a probability distribution of toxicity values;
- allows to estimate the HR₅ that is the Hazard Rate prone to affect 5% of the species.

Toxicity values as input for SSD: namely 50% Effective Rates (ER₅₀), usually provided as estimates deriving from dose-response models fitted on toxicity test data. The uncertainty associated to toxicity values is currently ignored, due to a lack of clear recommendations on the way to proceed.

Objective of our project: Account for the uncertainty on toxicity values in SSD analyses and study how this uncertainty may influence the HR₅ estimate. We used Non-Target Terrestrial Plants (NTTP) exposed to herbicides as a case study.

Material and methods

Data: Standard toxicity test data on NTTP provided by BAYER for 11 compounds, collected in seedling emergence (SE) and vegetative vigour (VV) tests.

- Species: a set of 10 different species were exposed to a range of five tested rates plus a control;
- Endpoints: emergence (SE), survival (SE and VV) and shoot dry weight (SE and VV) at day 21.

Step 1

Dose-response modelling

- A three-parameter log-logistic model was fitted to toxicity test data under a Bayesian framework.
- The R-packages 'morse' and "rjags" were used.
- A marginal posterior probability distribution of the ER₅₀ is returned, which can be summarized with a median and a 95% credible interval (CI95).

Step 3

SSD analyses

- A log-normal probability distribution was fitted to input ER₅₀ values under a frequentist framework in two ways:
- 1) only point estimates (ER_{50} medians), that is the current practice. The obtained HR_5 is denoted $HR_{5,1}$.
- 2) censored ER_{50} obtained from Step 2. The obtained HR_5 is denoted $HR_{5,2}$.
- The R-package 'fitdistrplus' dealing with censored data in a

Step 2

Accounting for the uncertainty on the $\mathrm{ER}_{\mathrm{50}}$

- → Always use the CI95 of the ER₅₀?
 - The highest tested rate (max_rate) in NTTP test equals the maximum field application rate for agronomical relevance. For some species, this rate might be too low to generate more than 50% effects, leading to an unreasonable estimate of the ER₅₀. In this case, can the information still be included in the SSD as a right-censored probability distribution of the ER₅₀? If yes, how?
 - Need for a decision criterion that we built as a probability-based overlapping ratio:

 $ratio = \frac{P(LCI95 \le ER_{50} \le max_rate)}{P(LCI95 \le ER_{50} \le UCI95)}$

LCI95 (UCI95): lower (upper) bound of the CI95

• Given a decision threshold T initially ranging from 0 to 1, we propose to censor the ER₅₀ as follows:

[*LCI*95, *UCI*95] if ratio > T

mathematically sound way was used. An alternative is the MOSAIC web platform <u>https://mosaic.univ-lyon1.fr/ssd</u>.

 $[\min(\text{LCI95}, \max_{\text{rate}}), +\infty) \quad if \ ratio \leq T$

• Ultimately, we chose T = 0.5 as the best compromise.

Figure 1: Example fits of dose-response (A) and SSD based on either ER₅₀ medians (B1) or censored ER₅₀ (B2) for the shoot dry weight endpoint

Comments

The orange curve above with 95% confidence interval in grey credible

Table 1: HR_5 based on either ER_{50} medians ($HR_{5,1}$) or censored ER_{50} ($HR_{5,2}$)

- band describes the effect of the tested compound on the shoot dry weight for the sugar beet.
- The SSD curve in Figure B2 has a much larger confidence band (red dotted curves) than the one in Figure B1.
- Table 1 shows that the $HR_{5,2}$ is smaller than the $HR_{5,1}$, the same for the lower bounds of their 95% confidence interval.

In the present study, for the five studied endpoints and by comparing $HR_{5,2}$ to $HR_{5,1}$, accounting for the uncertainty on the ER_{50} provides :

- a lower HR₅ value for survival (SE) and shoot dry weight (SE and VV) endpoints;
- a higher HR₅ value for emergence (SE) and survival (VV) endpoints (based on respectively only 5 and 3 distinct ER₅₀ values because of lots of rightcensored ER₅₀ values).

	Method (1)	Method (2)
Nb. ER ₅₀ values (right-censored)	10 (0)	10 (4)
HR ₅ [95% confidence interval]	145.8 [79.6; 378.7]	123.1 [65.5; 337.1]

Conclusion

Based on our preliminary results of NTTP exposed to an herbicide, we are confident in the fact that accounting for the uncertainty on ER_{50} values is the way to move forward in the future for ERA.

Acknowledgement

The authors thank ECPA (European Crop Protection Association) to financially support this work.

Contact: sandrine.charles@univ-lyon1.fr